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Abstract

In recent years, Artificial Intelligence (AI) has transformed scientific inquiry and
technological innovation significantly in almost all facets of life. This paper presents
a study of Physics-Informed Neural Networks (PINNSs) solution techniques applied
to Partial Differential Equation (PDE) models in population dynamics. Specifically,
the paper focuses on modelling disease spread using an advection-diffusion-
reaction partial differential equations (PDEs), with the solution sought through
Physics-Informed Neural Networks (PINNs) technique. The community is being
modelled as a bounded spatial domain where the disease density evolves over time
and space. By embedding the underlying physical and biological laws into the
network architecture, PINNs offer a robust and accurate framework to simulate
infectious disease dynamics. Furthermore, numerical simulations, were
implemented using the MATLAB ODE45 scheme, which provided insights into the
interplay between disease progression, recovery, birth and death rate as parameter
of interest in the transmission dynamics.
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Introduction

Population dynamics refer to study of the variation in the size and density of
population over time and space reflecting the net effect in differences among
individuals in their physiological and behavioural interactions with the
environment. It represents the changes in the number a species in a single location.
Population models have been germane and the time dependent interactions
between modelling species have been of great interest to ecologists over the years.

Beginning from the well-known Lokta-Volterra predator prey equations derived in
the 1920s, mathematical modellers have utilised these equations to describe even
much more complex systems in more biological setting such as competition,
symbiosis, disease model (SIR -Susceptible Infected-Recovered typed model)
powered mostly by ordinary differential equations and a host of others. However,
as noted by Christou, (2022) this set of ordinary differential equations fails to capture
the spatial effect and thus, the inclusion of diffusion terms and spatial dependence
in the work by Conway and Smoller (2007), birthed the use of PDE partial
differential equations (PDEs) in modelling dynamics.

Partial differential equations (PDEs) are pivotal to the modelling of natural
phenomena and find applications in almost every field of science and engineering
driving the means to tackling vast and ever-expanding array of real-world
problems —from the simple heat equation to more complex systems describing
financial markets, weather forecasting, or population dynamics. In the context of
disease spread, PDEs serve as a powerful technique to capture the dynamics of
infectious agents over space and time. The desire to understand the solutions to
these equations has over the years pre- occupied mathematicians, scientist as these
solutions offer both insights into the underlying phenomena and valuable predictive
capabilities.

Traditional numerical techniques for approximating PDEs, such as finite difference
and finite element methods, have been thoroughly developed and refined over the
years. These methods typically involve discretising the spatial domain using a mesh,
which transforms the PDE into a system of ordinary differential equations (ODEs)
that can be time-stepped to approximate the original problem. Though highly robust
and reliable, these grid-based methods require copiously fine discretisations to
enhance accuracy. For stability considerations, finer spatial discretisations requires
smaller time steps, resulting in more computationally expensive schemes.

Neural network describes a mathematical convenient and simplified version of
neurons in a brain encapsulating elements called 'perceptrons’. Neural network is
made up of a large network of these perceptrons just as the brain is a big network of

neurons.
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In recent years, advances in Artificial Intelligence (AI) have opened new vistas for
solving PDEs. Solving partial differential equations (PDEs) governing physical
phenomena using machine learning (ML) has emerged as a new field of scientific
machine learning leveraging the universal approximation theorem and high
expressivity of neural networks. Physics-Informed Neural Networks (PINNs)
represent a groundbreaking technique that roots the physical laws —expressed as
PDEs—directly into the neural network's training process. Rather than relying
wholly on discretisation, PINNs enforce the consistency with observed data and the
underlying PDE constraints simultaneously by incorporating both into a composite
loss function. For modelling disease spread, this methodology is particularly
attractive, since it enables the integration of sparse or noisy observational data with
the rigorous mathematical structure provided by an advection-diffusion-reaction
PDE.

The recent forays of scientists and modellers into physics informed neural network
(PINN) otherwise known as theory trained neural network (TTNN) to provide
solutions to PDE systems is well documented. For example, Raissi et al., (2019)
introduced a novel framework that leverages machine learning (ML) integrated
with physics-based constraints both to solve and understand partial differential
equations (PDEs) from data. Their approach comprises two complementary
strategies: a continuous time model that embeds PDE residuals into the loss function
to create data-efficient spatio-temporal approximators, and a discrete time model
that employs implicit Runge-Kutta schemes for highly accurate temporal
integration. This dual technique has been effectively utilised across diverse
spectrums —including fluid dynamics, quantum mechanics, reaction-diffusion
systems, and nonlinear shallow-water wave propagation—demonstrating its
capacity to not only simulate complex systems with limited data but also uncover
underlying physical laws (Wu et al.,2024).

For Rodrigues, (2024), the main idea behind PINNS is to train neural networks to
learn not only from observed data but also adhere to the underlying physics that
govern the system. This is achieved by incorporating differential equations or other
relevant physical constraints as additional terms in the loss function during training.
This unique combination allows PINNSs to generalise well beyond the available data
and offers a data-driven framework for solving complex physical problems.

Lin and Chen (2023) proposed a twin novel physics-informed neural network
(PINN) schemes that integrate Miura transformation constraints into the learning
process to solve nonlinear partial differential equations (PDEs) using an
unsupervised approach. Their method leverages the Miura transformation as a
critical bridge, allowing initial-boundary data from one nonlinear equation to drive
the data-driven solution of another. Through extensive computational experiments
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on the KdV and mKdV equations, the authors not only reproduced the dynamic
behaviour of the solutions but also discovered a new localised wave —namely, a
kink-bell type solution for the defocusing mKdV equation. Their comparative
analysis of the two schemes underscores that each has its own merits, suggesting
that the choice of method should be tailored to the specific problem at hand. The
utilisation of PINNs by several authors Rodrigues ((2024); Lin and Chen (2024); Wu
et al. (2024) to study different phenomena directed by PDE systems underscore the
growing influence of Artificial Intelligence (AI) enabled solutions in everyday life.

In this study, a novel PDE modelling technique of population dynamics specifically
disease transmission dynamics using the Physics informed neural networks
(PINNs) solution techniques is formulated and analysed qualitatively and
quantitatively. The study is further structured for ease of presentation as follows:
Section one deals with the introduction  while section two entertains the
mathematical formulations and assumptions. Section three is engulfed in the
analysis involving both qualitative and quantitative approach. Section four is
concerned with the simulations and discussions of the results. The paper concludes
in section five with further research direction.

Mathematical Formulations and Assumptions

Disease spread in a typical population amongst species is characterised by a
complex interaction such as spatial movement representing the advection terms,
random movement (diffusion) and local interactions (reactions) such that the
governing equation is directed by a PDE. In this study, an advection-reaction
diffusion model describes the spread of a disease in a local population and is
presented thus:

2—1: + V.(vu) = DVu + R(u, x, t) (2.1),

Where u(x, t) is the disease density at location x and time t.

v is the advection velocity field representing the human movement

D is the diffusion coefficient and R(u, x, t) is the reaction terms modelling the local
infection dynamics such as infectivity, recovery and death with R(u,x,t) =
pu(l —u) —uy and follows a logistic format, 8 being the infection transmission rate
and y is the infection recovery rate. A feed forward neural network was designed to
approximate the solution of system (2.1). The network architecture included an
input layer, multiple hidden layers, and an output layer corresponding to the
predicted population size. The loss function is modelled below:

L(p) = Lagta + ALppg (2-2)
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N
Where L;,¢q = Nidz l.ff |U(x;;t;;0) —u;|®  is the measure of error with respect to the
observed disease data and A is the regularisation parameter.
I 155+ V. (VU555 0) ) — DVUC; ;) = R(UCx;3 43.0),x,t) s the
measure of the PDE solutions ensuring that the governing equation is enforced in
this instance by penalising any violation of the underlying physical laws at the point
of selection in the domain of consideration.

Lppr =

PINN Architecture

The algorithm for the implementation of PINN is outlined.in these sections. This is
achieved as follows:

1. Define the PDE parameters by setting values for Advection, diffusion coefficient,
infection transmission rate and recovery rate respectively v, D, f and y .

2. Define the normalised domain asf2 := x € [0 1] and t € [0 1] for the spatial location and
time.

3. The Nguq point along the spatial domain att =0 is generated using the
Guassian profile centred at x =0.5 to simulate the initial outbreak:
u(x,0) = exp (—100(x — 0.5)?

4. The N¢o0. random points x(x, t) is generated such that the enforced neural
network output satisfies the governing PDE throughout the domain.

5. The neural network setup is implemented manually using the feed-forward
neural network with two input layers corresponding the x and t and two hidden
layers with 20 neutrons using the hyperbolic tangent (tanh) activation function
and a single neuron output that predicted the disease density u(x,t).

6) All network parameters (weights and biases) are initialised using small random
values
and stored in a single vector 6 .
7) The loss function is defined by computing the mean square error (MSE) between
the predicted neural network and the initial observed data (observed error)
such that:

1 N
LoSSgata = @Zizdfta uyn (x5 0;0) — Ugata (xi))z

8) Define the PDE loss (residual error) by approximating the derivatives of u(# t)
using central finite differences such that

u(x,t+e)—u(x,t—e)

the time derivative u; = ”

and the spatial derivative
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_ulxtet)-u(x—et)
x 2e
u(x+e,t)—2ulx,t)+u(x—et)
€2

Duy, — fu(l —u) —yu and computing the PDE loss as the MSE  of this residual
such that

and the second spatial derivative Uy =

. Forming the PDE residual function  f = u; + vu, —

Neolioc

1
LoSSppg = E f(x;,t)?
Ncolloc =1

9) The combined data and PDE loss function is calculated:

Losseorar = LOSSppr + LOSSgqta

10) Define the objective function that returned the total loss function given by the
parameter fand thereafter utilised the trained network to predict u(x, t) over
the grid covering the entire domain u(x, @).

Based on the above algorithm generated using MATLAB is as shown in the table
below:

Table 1
Algorithm generated using MATLAB

Iteration Func-count  f(x) Step-size  optimality
0 502 0.186273 0.781
1 1506 0.13376  0.321166 0.307
2 2008 0.109949 1 0.123
3 2510 0.104914 1 0.0568
4 3012 0.103023 1 0.0249
5 3514 0.096667 1 0.0776
6 4016 0.094622 1 0.0426
7 4518 0.0939039 1 0.00619
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8 5020 0.093862 1 0.00111

9 5522 0.0938617 1 0.00131
10 6024 0.0938607 1 0.00153
11 7028 0.0938599  0.377604 0.00179
12 8032 0.0938595  0.282073 0.00144
13 13554 0.0938591  0.346832 0.00154
14 14056 0.0938567 1 0.00131
15 14558 0.0938553 1 0.00125
16 15060 0.0938551 1 0.00139
17 15562 0.0938519 1 0.00132
18 16064 0.0938492 1 0.00214
19 16566 0.0938439 1 0.00385
20 17068 0.0938292 1 0.00405

Numerical Simulations

As noted by Chin & Mckay, (2019) model verification and validation can provide
evidence that a given model is accurate and hence, simulation of the model system
(2.1) was carried out with the data to represent and understand the research
problem. Since it is based on dearth of mathematical modelling on the subject, all
values are assumed for simulation purposes.
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Predicted Disease Spread Using PINN
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Figure 1: A 3D plot in a normalised spatial domain 2:x € [0 1] of disease spread
in a typical community where the simulations begin at t = 0 and t = 1 capturing
how the disease propagates over time. u represent the prevalence of the disease at
each spatial location x and time t.

The figure depicts a gradual increase in the density of the disease from blue (low
points) to red (high points) as the time progresses. As could be seen from the figure,
there are no sharp peaks or localised hotspot evidently suggesting a uniform
propagation over time and space rather than a sudden outbreak. The sloped surface
shows a steady increase in disease density across space and time in the domain of
interest suggesting that the governing equations enforce a smooth continual spread
in the local community. The absence of sharp variations along the x —axis is
indicative of a diffusion dominated spread l-eading to a uniform distribution across
the local community of interest. The implication of the gradual spread of the disease
is suggestive that diffusion is the primary driver rather than advection. This might
be akin to a scenario where the recovery or removal terms are not enforced
mirroring the early stages of an epidemic where infections dominate over recovery.



AIJMR 2(1) OCTOBER 2025 PRINT - 3115-4050; ONLINE - 3115-4069

Predicted Disease Spread with Recovery
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Figure 2: A 3D plot of disease spread u(x,t) over time t and location x in a typical
community over a spatiotemporal domain incorporating diffusion, advection and
recovery. The plot showcases the fact that at time ¢t = 0 the infection begins as a
localised peak in the middle of the region of the local community with the initial
peak representing high infection concentration at the specific spatial location. Over
time, the disease spread outward, modelling the random movement (diffusion) of
infected individual while the rightward shift shows disease spread in a preferred
direction (advection). The infectivity peaked at the red (high point) and as
individual recovery ensued leading to reduction in the infective density and as this
happens over time then fewer individuals remain infected. Thus, as t = 1 the
infective individual reduces significantly showing the triple effects of diffusion,
advection and recovery. Though the infection is not completely eliminated but it is
diminished significantly. This is an indicative tendency towards disease control that
could be achieved in this instance. The result underpins that disease diffusion,
transport and recovery interact dynamically.
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Predicted Disease Spread with Recovery and Birth-Death Dynamics
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Figure 3: The plot illustrates the propagation of disease in a typical community
where birth and death are taken into account.

Discussion of Results

The simulations above as depicted in the visualisation seen in figures (1-3) showcase
a simple disease propagation under several modelling scenarios ranging from basic
disease transmission, recovery mechanism and birth-death dynamics proving key
insights that could be utilised for quick decision-making process in a public health
setting.

The initial plot mirrors a monotonically increasing surface indicating that disease
density increases over time and spatial location. The absence of the recovery
mechanism implies that once an infective individual remains infected in a
population leading to a gradual accumulation of the disease in the typical human
society could lead to the prevalence of the disease in such a situation. Expectedly, in
a purely diffusion-based model, where infections propagate freely without any
recovery; the disease continues to spread unabated until it saturates the entire
population - a reflection of unchecked epidemic.

On the other hand, the second plot (figure 2) reflect a non-monotonic trend where
initially the disease increases, peaked and finally decline over time, analogous to the
fact that the infected individual recover over time, resulting the decline in disease
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prevalence over the spatial domain. The inclusion of the recovery mechanism
significantly changes disease progression. The maximum burden of the disease is
represented at the peak and thereafter recovered individual lowered the disease
density, akin to a typical real-world epidemic scenario where disease outbreaks
have peaked phase followed by declining phase possibly due to immunity or
interventions.

Finally, the third plot represents a complex scenario owing to the introduction of
birth-death into the dynamics. In this instance new susceptible individual are
introduced by birth whereas infected individual could die reducing disease density.
Thus, the disease does not necessarily vanish out of the population but reaches
steady states depending on the birth, infection, recovery and death rate. The
implication of this situation is that if the birth rate exceeds the death rate, then the
new susceptible will enter the population enabling the disease to persist indefinitely
in the population. In the same vein, if the recovery and death interplay is high
enough, then the possibility of the disease to die out in the population is guaranteed.
The model underscores a real-world infectious disease system where the population
is dynamic, rather than being static.

Conclusion

This study has demonstrated the successful application of Physics-Informed Neural
Networks (PINNs) to model disease spread through an advection-diffusion-
reaction PDE. The approach effectively integrates sparse observational data with the
underlying physical laws governing disease dynamics, overcoming several
limitations of traditional numerical methods. By embedding the PDE constraints
directly into the training process, PINNs provide a robust and computationally
efficient means of forecasting epidemic evolution.

To illustrate the potential of this methodology, it was vital to simulate several
scenarios of disease spread in a typical local community. Numerical simulations
were implemented using the MATLAB ODE45 scheme, which provided insights
into the relationship disease propagation, recovery, birth and death rate as
parameter of interest in the transmission dynamics. The community is modelled as
a bounded spatial domain where the disease density evolves. An outbreak is
assumed to start from a localised region, figures (4.1-4.3) representing an initial
cluster of infection within the community. The velocity field is configured to reflect
common commuting patterns and daily movements, which are significant in
shaping the directional spread of the disease.

Diffusion models the random movement of individuals across the community,
accounting for local interactions that are not captured by directed movement. The
reaction term modelled to follow a logistic growth framework captures the intrinsic
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biological dynamics of disease transmission. The application of the PINNs
underpins the utility of the method in solving PDE systems.

Recommendations
Based on the results of the study, the following recommendations are made:
¢ The model should be applied to real-world epidemiological data to
demonstrate the practical relevance of PINNs instead of the current
simulations which uses hypothetical community parameters.

e Integrating PINN with real-time data stream and online learning could
enable dynamic predictions of outbreaks. This would provide timely
insight for public health officials, thereby, improving response efficiency
during emerging epidemic situations.

e Combining the PINNs with traditional finite element or difference
numerical scheme to explore their synergy could be utilised for enhanced
numerical accuracy and stability. This approach can leverage the
interpretability of the classical method while exploiting the flexibilities
and learning capacities of neural networks.

Suggestion for further Research

Further research avenues could explore the application of artificial intelligence for
policy analysis and forecasting. This could involve utilising Al techniques to model
and predict the impact of various policy interventions, including strategies to
mitigate disease outbreaks.
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